Extensions 1→N→G→Q→1 with N=C22 and Q=D4.D5

Direct product G=N×Q with N=C22 and Q=D4.D5
dρLabelID
C22×D4.D5160C2^2xD4.D5320,1466

Semidirect products G=N:Q with N=C22 and Q=D4.D5
extensionφ:Q→Aut NdρLabelID
C221(D4.D5) = C52C823D4φ: D4.D5/C52C8C2 ⊆ Aut C22160C2^2:1(D4.D5)320,668
C222(D4.D5) = Dic1017D4φ: D4.D5/Dic10C2 ⊆ Aut C22160C2^2:2(D4.D5)320,667
C223(D4.D5) = (C5×D4).31D4φ: D4.D5/C5×D4C2 ⊆ Aut C2280C2^2:3(D4.D5)320,845

Non-split extensions G=N.Q with N=C22 and Q=D4.D5
extensionφ:Q→Aut NdρLabelID
C22.1(D4.D5) = C20.58D8φ: D4.D5/C52C8C2 ⊆ Aut C221604C2^2.1(D4.D5)320,125
C22.2(D4.D5) = C4⋊C4⋊Dic5φ: D4.D5/Dic10C2 ⊆ Aut C2280C2^2.2(D4.D5)320,95
C22.3(D4.D5) = C4⋊D4.D5φ: D4.D5/Dic10C2 ⊆ Aut C22160C2^2.3(D4.D5)320,661
C22.4(D4.D5) = C4⋊Dic5⋊C4φ: D4.D5/C5×D4C2 ⊆ Aut C2280C2^2.4(D4.D5)320,10
C22.5(D4.D5) = C8.Dic10φ: D4.D5/C5×D4C2 ⊆ Aut C22804C2^2.5(D4.D5)320,45
C22.6(D4.D5) = D8.Dic5φ: D4.D5/C5×D4C2 ⊆ Aut C22804C2^2.6(D4.D5)320,121
C22.7(D4.D5) = Q16.Dic5φ: D4.D5/C5×D4C2 ⊆ Aut C221604C2^2.7(D4.D5)320,123
C22.8(D4.D5) = C4⋊C4.231D10φ: D4.D5/C5×D4C2 ⊆ Aut C22160C2^2.8(D4.D5)320,598
C22.9(D4.D5) = C20.31C42central extension (φ=1)320C2^2.9(D4.D5)320,87
C22.10(D4.D5) = C2×C20.Q8central extension (φ=1)320C2^2.10(D4.D5)320,590
C22.11(D4.D5) = C2×C10.Q16central extension (φ=1)320C2^2.11(D4.D5)320,596
C22.12(D4.D5) = C2×D4⋊Dic5central extension (φ=1)160C2^2.12(D4.D5)320,841

׿
×
𝔽